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Summary 

A tube of circular cross section whose radius is a function of a slow variable Z = (1/R)z, where z is the 
co-ordinate in the axial direction and R is a large streamwise Reynolds number,  may be designated a slender 
tube. An elementary approximation to the flow in such , tubes  is obtained and results compared with an 
approximation based on the profiles obtained by Daniels and Eagles [7] for exponential slender tubes. 

1. Introduction 

The steady flow in "slender tubes" will be studied in this paper. We take dimensionless 
cylindrical polar co-ordinates (r, 0, z) and suppose the rigid wall of the tube has the 
equation 

r=H(Z), w i t h Z = c z ,  

where ~ is a small parameter, and we assume that the streamwise Reynolds number R, 
defined in (2.1), is related to c by 

eR = X = O(1), as c ~ 0 .  

Thus the scale of variation in the axial direction is proportional to R. It can then be shown 
that if the Stokes stream function ~ is expanded in the form ff = ff0(r, Z ) +  ~2~1(r, Z)  
+ . . . .  the equation for ~k0 is essentially the classical boundary-layer equation. The 
problem for ~k0 is called the slender-tube problem. 

There has been much recent work on the corresponding slender channels, see for 
example Blottner [1], Eagles and Smith [2], Plotkin [3] and Allmen [4]. Some interesting 
flows can be calculated, including some with separation and re-attachment of the main 
stream. We mention also the work of Fraenkel [5,6] in which he shows that for a particular 
class of slender channels with very small curvature of the walls the solution may be 
expanded systematically in such a way that the appropriate local Jeffery-Hamel profile is 
the first approximation at each station. 

The case of slender tubes is slightly more difficult because of the extra complexity of 
the equations of motion and the singularity in these equations at r = 0. It is, of course, 
true that the general slender-tube problem may be tackled by finite-difference methods of 
integrating the boundary-layer equations. However, the computing work is not easy, 
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involving the repeated solution of non-linear systems of equations, so in this paper we 
develop an elementary method of approximation. The solution is expanded in powers of 
multiplied by functions of Z and ~, for which explicit forms are obtained up to the term 
in 73. At first sight it might be thought that such a series would be of very limited value, 
being useful only for small values of ?~. However, the nature of the series indicates it is 
probably convergent for a range of ~, rather than merely asymptotic (for ?~ ~ 0), and 
numerical calculations indicate that in many cases it is highly plausible that the series is 
useful for surprisingly large values of ~. 

Daniels and Eagles [7] considered the special case in which H ( Z ) =  exp(aZ) and 
showed that the flow was governed by an ordinary differential equation with independent 
variable 77 = r / H ( Z ) ,  which allows interesting solutions. The branch 1 family of such 
streamwise velocity profiles which are most likely to be physically relevant include profiles 
with points of inflexion, drastically different from Poiseuille flow. It is a one-parameter 
family, the parameter being 7 = ?~ H ' ( Z ) / H ( Z ) =  ha. We shall hereinafter refer to these 
profiles as the DE profiles. 

Eagles [8] generalized this work to tubes which are 'locally exponential' in the sense 
that (d H / d  Z ) / H  = f(¢ Z),  and showed that for many such tubes the DE profiles provide 
an excellent first approximation, the appropriate DE profile with 7 = ? ~ H ' ( Z ) / H ( Z )  
appearing as the first term in a systematic expansion for small e, and higher-order terms 
being shown to be numerically very small. This work is similar to that of Fraenkel [5,6] for 
channels. Eagles conjectured that the DE profiles were likely to be a good approximation 
in more general tubes. 

Using our series in powers of X, we are able to expand the difference between an exact 
solution and the local profile in powers of ?~. This series starts with ?~2, and numerical 
results are presented which make it plausible that if certain parameters are of limited size 
the local DE profiles, with 7 = ? ~ H ' ( Z ) / H ( Z )  at each station, are indeed a good 
approximation to the flow, containing all the essential qualitative features, and being 
numerically close to the exact solution in many cases. 

2. Expansion method for flow in slender tubes 

We take (r, 0, z) as cylindrical polar co-ordinates, r and z being made dimensionless by 
the radius L of the tube at z = 0. Then we define the Reynolds number 

M 
R -  ~,L (2.1) 

where M is the volumetric flow rate and ~, is the kinematic viscosity. 
We suppose flow is taking place in a tube whose rigid boundary is given by 

r = H ( Z )  (2.2) 

where 

Z = ez. (2.3) 

We also assume that 

Re = ~ = O(1) (2.4) 
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as { ~ 0. The Stokes stream function, made dimensionless by M, satisfies the equation 

( ) ( 0~ 02~ 0~']d 02~ 
r 2 Or Oz Oz Or D2~b + 7  2 Oz Oz 2 Oz Or 2 Or Or Oz 

3 O~ O~ 
r 4 OZ Or 

03~, ' ] 3 02~/. ' 3 1 (1  4 2 3 3 ~ +  q (2.5) 
= R / r D  ~ -  7 Or 022 Or 3 ] r 3 0F 2 r 4 ~rr 

where 

02 02 
D - - -  . (2.6) 0F 2 q- 022 

Now if O+/Oz = O({), 02~//0Z 2 = 0({ 2) etc., and R = O(1 /Q  the dominant terms are of 
order {. It is appropriate to expand the stream function in the form 

~b =F(*/ ,  Z)+{2Q(n ,  Z ) + . . .  (2.7) 

where 

7 = r / H ( Z )  (2.8) 

is the local cross-stream variable. Then we find the equation for F is 

t L ( F )  = X 4 ~ 07 J "tl 07 O~ 2 ~ 77 OTj 2 0 Z  Tj 2 O 7 OZ 

( 3 3 2 F  3 O F ) ]  (2.9) OF 1 O3S "q 72 73 
q- - ~  7 O~ 3 O~ 2 

where 

L = 
24 2 3 3 3 3 2 3 8 

- -  -f (2.10) 
374 7 0~ 3 "172 372 73 37" 

This is a form of the boundary-layer equation. (If the lengths were non-dimensionalized 
by a length LR instead of L the scalings would appear in more familiar form.) 

It should be noted that the dimensionless fluid velocities in the r and z directions 
respectively are, within this approximation, 

u = - - r  -10~b° ( - - 1  OF H '  OF) (2.11) 
Oz 7T oz+Tv-   ' 

V = r -1 0~b° -- 1 OF (2.12) 
Or r/H 2 Dr/ 
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and the dimensional fluid velocities are 

M M 
u* = - -  o* = - -  (2.13) L2 u, L2 o. 

The  boundary  conditions are that 

F=O(n 2) as ~ / + 0 ,  (2.14a) 

OF 
0 when n 1, (2.14b) 

On 

1 
F = 2---~ when n = 1. (2.14c) 

See Daniels and Eagles [7] for further details. 
In the cases considered here we shall take H'(Z) ~ 0 as Z ~ + oo and the appropriate  

flow as Z ~ + oo is Poiseuille flow: F ~ ( l /~- ) (n  2 - ½n4). If equat ion (2.9) was integrated 
forward from Z = - oz starting with Poiseuille flow the solution would ult imately settle 
down again to Poiseuille flow as Z ---, + oo, as found in the analogous channel-flow case 
by Eagles and Smith [2]. The method to be adopted here will automatically ensure 
Poiseuille flow at Z = _+ oo and so would not  be suitable if some other  profile were 
imposed at Z = - oo, say. 

We expand 

F ( n ,  Z;  X ) = F ( ° ) ( n ,  Z ) + X F ( I ) ( n  , Z)+?~=F(Z)(n,  Z ) +  . . . .  (2.15) 

and substituting this into (2.9) yields equations, f rom coefficients of powers of ?,, as 
follows: 

L { F (°) } = 0, (2.16) 

H'(Z){  1 }2 1F(O)F(o)]+F(O){1F(O) 1F(O) ] 
L { F ( ' ) } = 4 H - - H - ~ 7  {F')(°) ' " ""] n I '  ,),z )I 2 . z ]  

+Fz(O)( 1 (o) 3 3 ) --~Fgnn + ~ T F ~ ) -  ~-~F( °, , (2.17) 

L{F(2)}=4H'(Z)[E(o)(~F(1)_IFo) 1 ] H(Z)[ ~ ~ n nn  )-~F~(')F~ °) 

' ) + E < ' - " { 1 ~ ' " _  1 . 

j--~o (--1F(j) ~ 2 n3 n ] + Fz (1 - ' )  ~-won + F4J, - 3 F ( ,  , ] ,  (2.18) 



L { r (3) } = 4 ~  '0 nn 

+ E F( 2 j) ! E<J) _ 1F~(~ ) 
'0 ,,Tz j = 0  '02 

2 
-{- E F(z2-J'(-- !F_(J)-]- ~F(~"- AF_ (j)] 

j = O  \ '0 nnn "03 n ]" 

The solution for F (°) with boundary conditions (2.14) is easily found to be 

F(o)= !('02_ ½'04), 

the local Poiseuille-flow solution. 
Now the boundary conditions on the functions F (") for n > 0 are 

F {")=O('02 ) as ' 0 + 0 ,  

F~ ") = 0 when '0 = 1, 

F (n) = 0 when '0 = 1, 

and equation (2.17) has a solution of the form 

F°)=A(Z)+B(Z)'02+ C(Z)'04+E(Z)'02 log '0 + P('0, Z)  

55 

'02 n "0 nn ) 1F(2)E(°) 

(2.19) 

(2.20) 

(2.21a) 

(2.21b) 

(2.21c) 

F ( 2 ) ( ' 0 )  ' 0 2 _  9 8 0 4  1 1 0 0 6 _  6 0 0 8  165 10 = ~ ' 0  + 3~-'0 ~ ' 0  + 3~T'0 -- 3~11'012, 

F2c2) ( '0)= '02 _ ~525'04 ..[_ ~ ' 0 6  __~'0758 ..~ ~'015 10 --__1'012. 

(2.25) 

(2.26) 

where 

F(1)('0, Z ) -  1 H'(Z) 
97  2 H( Z) F(°('0) (2.22) 

where 

F(a)('0) = ,i,/2 _ 9'04 q_ ~'06 _ 1,08 . ( 2 . 2 3 )  

We proceed in a similar way to find 

10 800~r 3 H(Z) F(2)('0) 13 d H'(Z) 1800~r 3 d Z  ~ F•2)('0)' (2.24) 

where P('0, Z)  is a particular integral. The boundary condition (2.21a) eliminates terms 
independent of '0 and in '02 log '0. The solution is 
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Considering the equation (2.19) for F (3) we see that the products of terms on the 
right-hand side lead to functions of Z occurring in the forms S 3, SS' and S"  where 
S = H'/H. But since S" = 2SS' - (d /dZ)(H"/H)  it is convenient to write the/esul t  in 
the form 

where 

and 

FO)(,0, Z ) -  
2759 

297675~4 { S( Z) }3F1(3)(,0) + 
281 833 

38102 400~r 4 S(Z)S'(Z)F2~3)(,0) 

1459 
+ T(Z)F3~3)(,0), (2.27) 

3175 200'n "4 

S(Z)  = H ' (Z) /H(Z) ,  T(Z) = ( d / d Z ) (  H"(Z) /H(Z)}  (2.28) 

El(3)  ( ' 0 )  = ,0 2 _ 3.36616,04 + 4.81353,06 - 4.00156,08 + 2.13121,01° 

-0.68931,012 + 0.12059,0 TM - 0.00829,016, 

F~3)(,0) = ,02 _ 3.07959,04 + 3.88164,06 _ 2.80526,08 + 1.34308,010 

-0.40371,012 + 0.06855,0 TM - 0.00472,016, 

F3~3)(,0) = ,02 _ 3.01182,04 + 3.65233,06 _ 2.49786,08 + 1.13348,01° 

-0.32745,012 + 0.05518,014 - 0.00386,016. 

It was found to be impracticable to keep rational numbers in the coefficients here. 
It should be noted that the way in which we have arranged our results means that in the 

special case of exponential tubes where H'(Z) /H(Z)= const, the coefficients of F~2)(,0), 
F2~3)(,0) and F3~3)(,0) are zero. The remaining terms constitute an expansion in powers of 
XH'(Z)/H(Z) of the branch 1 solutions of the DE equation (4.1) with ~, = ~H'/H. 

Extensive checks were made on the accuracy of the analysis. One method of checking 
was to fix ,0, at say 0.5, and calculate numerically both sides of equations (2.19) from 
(2.20), (2.22), and (2.24). 

3. Some numerical results and discussion 

An inspection of the terms in the series shows that the coefficients of A n decrease rather 
rapidly with increasing n, and are numerically small. Thus the series might have a large 
range of usefulness. Since the highest derivative lies with the unknown function at each 
stage, the series has the general nature of a convergent series rather than merely 
asymptotic. Thus, for a particular value of X, if the moduli of the terms are decreasing 
steadily with n and if the last term is small, we may expect to have a good approximation. 
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To illustrate we consider two tubes whose radii are 

Ha(Z )= l + ½ tanh Z (3.1) 

and 

H 2 ( Z )  = 1 + ½ tanh2Z (3.2) 

which we shall call, respectively, tube 1 and tube 2. The first tube is divergent and the 
second convergent for Z < 0 and divergent for Z > 0. 

We consider the fluid velocity in the axial direction, in the form 

1 OF 

= G(°)(~/) +XG°)(~ ,  Z )  +)k2G(2)(~, Z)+~3G(3)(~,  Z ) +  . . . .  (3.3) 

In Table 1, for tube 1 with X---5, we show the separate contributions of the different 
powers of X at selected values of ~/and Z. We note that X3 contribution is less than about 

% of the leading term, and generally is much less than this. Also the ratio of the ~3 term 
to the ~2 term is in general less than ½. Overall, the results give the strong impression of 
convergence, and the expectation that higher-order contributions would be very small. As 
Z ~ + ~ ,  the flow approaches Poiseuille flow. 

We might expect useful results for even higher values of X. The profiles here differ 
considerably from Poiseuille flow. For example, with X = 5, at Z = 0 the maximum 
velocity is about 10% higher than Poiseuille flow, giving a 'sharper'  profile with varying 
curvature. The second derivative of the velocity with respect to ~/at the centre of the tube 
is about - 1.89 compared with - 1.27 for Poiseuille flow, at Z = 0. 

T a b l e  1. T h e  c o n t r i b u t i o n s  of  s e p a r a t e  p o w e r s  o f  ~ to  the  axial  ve loc i ty  prof i le  fo r  the t ube  wi th  H = 1 + 

( 1 / 2 )  t a n h  Z w h e n  X = 5 

Z h H ' / H  ~ G (°) ?tG O) X2G (2) X3G(3) 

- 0.8 2 .092 0 0 .637 0.0471 0 .0042 - 0 .0012 

0.3 0 .579 0 .0297 0 .0022 - 0 .0007 

0.7 0.325 0 .0114 - 0 .0009 - 0 .0003 

- 0 .4  2 .640 0 0 .637 0 .0595 0 .0124 0 .0013 

0.3 0 .579 0 .0375 0 .0067 0 .0006 

0.7 0.325 0 .0140 - 0 .0028 - 0 .0002  

0.0 2 .500 0 0 .637 0 .0563 0 .0153 0 .0042 

0.3 0 .579 0 .0355 0 .0083 0.0021 

0.7 0.325 - 0 .0136 - 0 .0035 - 0 .0009 

0 .4  1.798 0 0 .637 0.0405 0.0111 0 .0035 

0.3 0 .579 0.0255 0.0061 0 .0018 

0.7 0.325 - 0 .0098 - 0 .0025 - 0 .0007 

0.8 1.049 0.0 0 .637 0 .0236 0 .0059 0 .0017 

0.3 0 .579 0 .0149 0 .0033 0 .0009 

0.7 0 .325 - 0 .0057 - 0 .0014  - 0 .0004  
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Table 2. The contributions of separate powers of X to the axial velocity profile for the tube w i t h  

( 1 / 2 )  tanh2Z when ~ = 5 

H = I +  

Z X H ' / H  ~I G (°) ~G O) ~2G(2) ~3G(3) 

- 0.6 - 1.670 0.0 0 .637 - 0 .0376 0 .0058 - 0 .0004  

0.3 0 .579 - 0 .0237 0 .0032 - 0 .0002 

0.7 0.325 + 0.0091 - 0 .0013 + 0.0001 

- 0.2 - 0 .930 0.0 0 .637 - 0 .0209 - 0 .0076 0 .0036 

0.3 0 .579 - 0 .0132 - 0 .0043 0 .0019 

0.7 0.325 + 0.0051 0 .0017 - 0 .0008 

+ 0.2 0 .930 0.0 0.637 0 .0209 - 0 .0076 ~ 0 .0036 

0.3 0.579 0 .0132 - 0 .0043 - 0 .0019 

0.7 0.325 - 0.0051 + 0 .0017 0 .0008 

0.6 1.670 0.0 0 .637 0 .0376 0 .0058 0 .0004  

0.3 0 .579 0.0237 0 .0032 0 .0002 

0.7 0.325 - 0.0091 - 0 .0013 - 0.0001 

In Table 2, for tube 2 with ~ = 5 and selected values of Z and )1, we show the separate 
contributions of the powers of ~. Again the impression is of rapid convergence and we 
would expect higher-order terms to be negligible. This is true overall for this case. Here 
the values of XH'(Z)/H(Z) are smaller than in tube 1, so the flow is closer to Poiseuille 
flow. Nevertheless it is significantly different. There is a noticeable 'flattening' of the 
profiles in the convergent part of the tube and a 'sharpening' in the divergent part. Again, 
we could still expect reasonably accurate results for higher values of ~. 

In Figure 1 we show examples of the velocity profiles calculated using the series for 
tube 2 with X = 10. The profiles represent the velocity with respect to )1 at various values 

X 10 -1 

()(DO(D O 

s! e° 

4.  

2 .  

0 
o 2 4 6 B ~ID 

11 XlO -1 

Figure 1. Velocity profile for tube at various values of Z when A = 10. - Poiseuille flow; * Z = -  2; + 

Z = - 0 . 6 ;  O Z =  0.8. 
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Figure  2. Second der iva t ive  of veloci ty  prof i le  as a funct ion  of Z at  ~1 = 0 w h e n / t  = 6. TI :  Tube  1. T2: Tube  2. 

+ Poiseui l le  Flow. 

of Z in the range Z--- - 2  to Z--- + 2. Figure 2 shows the second derivative of the axial 
velocity profile as a function of Z at r /= 0 when X = 6. 

4. Comparison with the Daniels and Eagles profiles 

The DE profiles are exact solutions for the slender-tube equations when X H ' / . H  = y = 

const. The velocity function gO/) satisfies the ordinary differential equation 

g ,,, _ r / - l g , ,  _ r / - 2 g ,  + 4 7 g g '  = 0 (4.1) 

with the boundary conditions 

g (7/) is regular at r /= 0, (4.2) 

1 
1 g(r/) d r /=  ~-~, g ( 1 ) = 0 .  (4.3) 

In more general tubes, with ( d H / d Z ) / H  = f ( e Z )  they have been shown to be the first 
term in an asymptotic series in powers of c, the value of 7 in (4.1) being taken as 
H ' ( Z ) / H ( Z )  at each value of Z. Higher-order terms were shown to be numerically small, 
leading Eagles [8] to conjecture that the DE profiles are a good approximation in more 
general slender tubes. 

From our expansion in powers of X it can be seen that the difference between an exact 
solution and the DE profile of each value of Z is 

E ( x ,  r/, z )  = x 2 - -  
a3 dS_a 2)(r/) + x3 

1 8 0 0 ~  -3 d Z  

281 833 dS G~3)(r/) 
38102 400rr 4 S~-~ 

+X 3 1459 d (H")  
3175200~r 4 d-Z H G~3)(~/) + . . . .  

(4.3) 
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T a b l e  3. Di f fe rences  be tween  the  D E  a p p r o x i m a t i o n  a n d  exac t  so lu t ion .  C o n t r i b u t i o n s  o f  s e p a r a t e  t e rms  ~k2E (2) 
a n d  ~,3E°) fo r  tube  wi th  H = 1 + ( 1 / 2 ) t a n h  Z w h e n  X = 3 

z AH'/H ~; D E  ~3E (2) ~.3E (3) 

- 1.0 1.017 0.0 0 .66185 - 0 .00168 - 0 .00047  

0.8 0 .22184  0 .00040  0 .00010  

- 0.4 1.584 0.0 0 .67817 - 0 .00051 - 0 .00047 

0.8 0 .21726 0 .00012 0 .00010 

0.4 1.078 0.0 0 .66348 0 .00169  0.00051 

0.8 0 .22137 - 0 .00040 - 0 .00011 

1.0 0 .456 0.0 0 .64732 0 .00107 0 .00023 

0.8 0 .22602 - 0 .00026 - 0 .00005 

w h e r e  

H! Gm(")(~/)= I--8 (f(n)(T;]] and S =  -- (4.4) 
"0 ~'0 ~' m ~, l/ H " 

We have calculated the separate terms in this series numerically for tube 1 and show some 
of the results in Table 3 for the case when 2~ = 3 for illustration. We denote the series for 
the error by 

z )  z )  + . . . .  

It  is apparent that for these tubes with ~ = 3 the DE profiles are an extremely good 
approximation. Even with 2~ = 5 the maximum difference between the velocity (at 7; = 0) 
of the DE profile and the exact solution can be estimated to be less than about 1.5%, and 
generally much less. The slightly anomalous case in Table 4 at Z = - 0 . 4  where the 2, 3 
contribution is as high as the ?2 contribution arises from the fact that E{2)(,1, Z) contains 
dS/dZ as a factor and this happens to be numerically small for negative Z of moderate 
size. It  should not be taken as evidence of the non-convergence of the series. The case of 
Z = 0.4 should be taken as a better indication of the convergent nature of the series. 

T a b l e  4. Va lues  o f  the  ve loc i ty  func t i ons  Gt  1), G~ 2), G2 ~2) 

0.0 2 .000 2.000 2 .000 

0.1 1.910 1.883 1.890 

0.2 1.655 1.557 1.581 

0.3 1.261 1.085 1.129 

0.4 0 .782 0 .559 0 .614 

0.5 0.281 0 .078 0 .128 

0.6 - 0 .167 - 0 .276 - 0 .249 

0.7 - 0 :484 - 0.451 - 0 .459 

0.8 - 0 . 5 9 8  - 0 . 4 4 0  - 0 . 4 7 8  

0.9 - 0 .448 - 0 .273 - 0 .316 

1.0 0 .000 0 .000 0 .000 



61 

5. Further discussion 

The dominant contribution to the change from Poiseuille flow is given by ?~ ( H ' / H ) G  ~0(~1). 
In Table 4 we show values of G~1)(7/), G~2)(,/) and G2~2)(7/). It can be seen clearly how the 
function ?t(H'/H)G~1)(71) contributes to the flattening of the profiles when H'/H < 0 
and to the sharpening when H'/H > 0. In fact for the cases considered earlier just the 
approximation G (°) + XG ~1) seems to give a remarkably good approximation for X < 3. 

We have proposed two possible approximations. The first one is the use of the series 
G (°) + ~kG O) + ~k2G (2) + ~3G(3) for the axial velocity. By using the expressions calculated 
earlier we can show that 

G~3)(0, Z)-~ 0.943 X 1 0 - s T ( Z ) - 0 . 1 5 1 9  X IO-3S(Z)S'(Z) 

+0.1903 X 1 0 - 3 ( S ( Z ) }  3 (5.1) 

where T ( Z ) =  (d/dZ)(H"/H) and S ( Z ) =  H'/H. Ignoring the first term we propose 
that a practical rule for the application of this approximation is that 

X 310.029S 3 - 0.024SS'1 < 1. 

The ?3 term is then less than about 1% of the leading term at 7/= 0. As an example, for 
tube 1 at Z = 0 with S(0) = ½ and S'(0) = - ¼ this gives ~ < 5.3. 

The second proposed approximation is to use the local DE profile at each stage. The 
leading term in the correction to this approximation is calculated from (4.3) to be 
-0.0004658~2S ' at 71 = 0. We suggest that a practical rule for the usefulness of the DE 
approximation is that the modulus of this term should be less than 0.005. This leads to 

~21 s'(z)I <10 ,  

approximately. As an example for tube 1 at Z = 0 this requires 2~ < 6.3. 
We conclude by mentioning the question of the stability of these flows. It is known that 

Poiseuille flow is stable to small disturbances for all Reynolds numbers. We believe that 
many slender-channel flows are unstable for sufficiently high values of the parameter 
hH'(Z)/H(Z). The present approximation makes a study of their stability more easily 
possible. This study is under way and results will be presented at a later date. 
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